106 research outputs found

    Broadband wavelength conversion at 40Gb/s using long serpentine As2S3 planar waveguides

    No full text
    We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal by cross-phase modulation in a newly developed chalcogenide glass waveguide based photonic chip. These new serpentine As2S3 waveguides offer a nonlinear coefficient ≈1700 W-1km-1 with 5× lower propagation loss over a length of 22.5 cm which ensures the full propagation length contributes towards the nonlinear process. This reduces the peak operating power thereby allowing a ×4 increase in the data rate compared with previous results. Spectral measurements show the device operates over a span of 40 nm while system measurements show just over 1 dB of power penalty at a bit-error rate of 10-9. This is primarily due to the compact planar waveguide design which minimizes the effect of groupvelocity dispersion

    Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals

    No full text
    We demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal using four-wave-mixing (FWM) in a dispersion engineered chalcogenide glass waveguide. The 6 cm long planar rib waveguide 2 μm wide was fabricated in a 0.87 μm thick film etched 350nm deep to correspond to a design where waveguide dispersion offsets the material leading to near-zero dispersion in the C-band and broadband phase matched FWM. The reduced dimensions also enhance the nonlinear coefficient to 9800 W-1km-1 at 1550 nm enabling broadband conversion in a shorter device. In this work, we demonstrate 80 nm wavelength conversions with 1.65 dB of power penalty at a bit-error rate of 10-9. Spectral measurements and simulations indicate extended broadband operation is possible

    Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration

    No full text
    We report on the fabrication and optical properties of etched highly nonlinear As2S3 chalcogenide planar rib waveguides with lengths up to 22.5 cm and optical losses as low as 0.05 dB/cm at 1550 nm - the lowest ever reported. We demonstrate strong spectral broadening of 1.2 ps pulses, in good agreement with simulations, and find that the ratio of nonlinearity and dispersion linearizes the pulse chirp, reducing the spectral oscillations caused by self-phase modulation alone. When combined with a spectrally offset band-pass filter, this gives rise to a nonlinear transfer function suitable for all-optical regeneration of high data rate signals

    Single parameter optimization for simultaneous automatic compensation of multiple orders of dispersion for a 1.28 Tbaud signal

    Get PDF
    We report the demonstration of automatic higher-order dispersion compensation for the transmission of 275 fs pulses associated with a Tbaud Optical Time Division Multiplexed (OTDM) signal. Our approach achieves simultaneous automatic compensation for 2nd, 3rd and 4th order dispersion using an LCOS spectral pulse shaper (SPS) as a tunable dispersion compensator and a dispersion monitor made of a photonic-chip-based all-optical RF-spectrum analyzer. The monitoring approach uses a single parameter measurement extracted from the RF-spectrum to drive a multidimensional optimization algorithm. Because these pulses are highly sensitive to fluctuations in the GVD and higher orders of chromatic dispersion, this work represents a key result towards practical transmission of ultrashort optical pulses. The dispersion can be adapted on-the-fly for a 1.28 Tbaud signal at any place in the transmission line using a black box approach

    Highly-nonlinear chalcogenide glass devices for high-speed signal processing and characterization

    Get PDF
    We review the latest advances in dispersion-shifted Chalcogenide waveguides enabling highly nonlinear and low dispersion planar rib circuits of centimetre length. Its performance advantages for more broadband and higher speed nonlinear signal processing are shown

    Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip

    No full text
    We report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As2S3 chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion. Measurements of pulses as short as 260 fs produced from a soliton-effect compressor reveal features not evident from the pulse’s optical spectrum. We also applied an inverse Fourier transform numerically to the captured data to re-construct a time-domain waveform that resembled pulse measurement obtained from intensity autocorrelation

    Simultaneous multi-impairment monitoring of 640 Gb/s signals using photonic chip based RF spectrum analyzer

    No full text
    We report the first demonstration of simultaneous multiimpairment monitoring at ultrahigh bitrates using a THz bandwidth photonic-chip-based radio-frequency (RF) spectrum analyzer. Our approach employs a 7 cm long, highly nonlinear (γ ≈9900 /W/km), dispersion engineered chalcogenide planar waveguide to capture the RF spectrum of an ultrafast 640 Gb/s signal, based on cross-phase modulation, from which we numerically retrieve the autocorrelation waveform. The relationship between the retrieved autocorrelation trace and signal impairments is exploited to simultaneously monitor dispersion, in-band optical signal to noise ratio (OSNR) and timing jitter from a single measurement. This novel approach also offers very high OSNR measurement dynamic range (> 30 dB) and is scalable to terabit data rates

    Chip-based Brillouin processing for carrier recovery in coherent optical communications

    Get PDF
    Modern fiber-optic coherent communications employ advanced spectrally-efficient modulation formats that require sophisticated narrow linewidth local oscillators (LOs) and complex digital signal processing (DSP). Here, we establish a novel approach to carrier recovery harnessing large-gain stimulated Brillouin scattering (SBS) on a photonic chip for up to 116.82 Gbit/sec self-coherent optical signals, eliminating the need for a separate LO. In contrast to SBS processing on-fiber, our solution provides phase and polarization stability while the narrow SBS linewidth allows for a record-breaking small guardband of ~265 MHz, resulting in higher spectral-efficiency than benchmark self-coherent schemes. This approach reveals comparable performance to state-of-the-art coherent optical receivers without requiring advanced DSP. Our demonstration develops a low-noise and frequency-preserving filter that synchronously regenerates a low-power narrowband optical tone that could relax the requirements on very-high-order modulation signaling and be useful in long-baseline interferometry for precision optical timing or reconstructing a reference tone for quantum-state measurements.Comment: Part of this work has been presented as a postdealine paper at CLEO Pacific-Rim'2017 and OSA Optic

    Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing

    No full text
    We report the first demonstration of error-free 640 Gbit/s demultiplexing using the Kerr non-linearity of an only 5 cm long chalcogenide glass waveguide chip. Our approach exploits four-wave mixing by the instantaneous nonlinear response of chalcogenide. Excellent performance is achieved with only 2 dB average power penalty and no indication of error-floor. Characterisation of the FWM efficiency for the chalcogenide waveguide is given and confirms the good performance of the device
    • …
    corecore